138 research outputs found

    T2-weighted cardiovascular magnetic resonance in acute cardiac disease

    Get PDF
    Cardiovascular magnetic resonance (CMR) using T2-weighted sequences can visualize myocardial edema. When compared to previous protocols, newer pulse sequences with substantially improved image quality have increased its clinical utility. The assessment of myocardial edema provides useful incremental diagnostic and prognostic information in a variety of clinical settings associated with acute myocardial injury. In patients with acute chest pain, T2-weighted CMR is able to identify acute or recent myocardial ischemic injury and has been employed to distinguish acute coronary syndrome (ACS) from non-ACS as well as acute from chronic myocardial infarction

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful.This work was supported by Ministerio de EconomĂ­a, Industria y Competitividad (Spain) under projects FIS2017-82919-R (MINECO/AEI/FEDER, UE) and FIS2015-66570-P (MINECO/FEDER), and by Generalitat Valenciana (Spain) under project PROMETEO II/2015/015

    Review of Journal of Cardiovascular Magnetic Resonance 2013

    Full text link

    Thermal Fringe Formation during a Hologram Recording Using a Dry Photopolymer

    No full text
    In this study we investigated the undesired but possible fringe formation during the recording of large size holographic optical elements (HOE) using a dry photopolymer. We identified the deformation of the recording element during hologram exposure as the main source for this fringe formation. This deformation is caused mainly by the one-sided heating of the recording element, namely, the dry photopolymer–recording plate stack. It turned out that the main source for this heating was the heat of polymerization in the dry photopolymer released during the exposure interval. These insights were translated into a physical model with which quantitative predictions about thermal fringe formation can be made depending on the actual HOE recording geometry, recording conditions and characteristics of the dry photopolymer. Using this model, different types of large size HOEs, used as components to generate a steerable confined view box for a 23” diagonal size display demonstrator, could be recorded successfully without thermal fringe formation. Key strategies to avoid thermal fringe formation deduced from this model include balancing the ratio of lateral recording plate dimension R to its thickness h, recording the power density P or equivalently the exposure time texp at a fixed recording dosage E, and most importantly recording the the linear coefficient of thermal expansion (CTE) of the recording plate material. Suitable glass plates with extremely low CTE were identified and used for recording of the above-mentioned HOEs

    The Chemistry and Physics of Bayfol® HX Film Holographic Photopolymer

    No full text
    Holographic photopolymers are a new technology to create passive diffractive optical elements by a pure laser interference recording. In this review, we explain the chemistry concepts of light harvesting in an interference pattern and the subsequent grating formation as chemical response. Using the example of the newly developed Bayfol® HX film we discuss the reaction-diffusion driven photo-polymerization process for an index modulation formation to create volume phase gratings. Further we elucidate the selection of monomer chemistry and discuss details of the recording conditions based on the concept of exposure dosage and exposure time. Influences ranging from high dosage recording to low power recording are explained and how to affect the desired diffraction efficiency. Finally, we outline and demonstrate the process to mass manufacturing of volume phase gratings

    Thermal Fringe Formation during a Hologram Recording Using a Dry Photopolymer

    No full text
    In this study we investigated the undesired but possible fringe formation during the recording of large size holographic optical elements (HOE) using a dry photopolymer. We identified the deformation of the recording element during hologram exposure as the main source for this fringe formation. This deformation is caused mainly by the one-sided heating of the recording element, namely, the dry photopolymer–recording plate stack. It turned out that the main source for this heating was the heat of polymerization in the dry photopolymer released during the exposure interval. These insights were translated into a physical model with which quantitative predictions about thermal fringe formation can be made depending on the actual HOE recording geometry, recording conditions and characteristics of the dry photopolymer. Using this model, different types of large size HOEs, used as components to generate a steerable confined view box for a 23” diagonal size display demonstrator, could be recorded successfully without thermal fringe formation. Key strategies to avoid thermal fringe formation deduced from this model include balancing the ratio of lateral recording plate dimension R to its thickness h, recording the power density P or equivalently the exposure time texp at a fixed recording dosage E, and most importantly recording the the linear coefficient of thermal expansion (CTE) of the recording plate material. Suitable glass plates with extremely low CTE were identified and used for recording of the above-mentioned HOEs
    • …
    corecore